
Term Project _ Option 2: Dictionary Lookup using Tries

CS 2336.004

Due Date: April 30th, 2017

In this project option, you are going to implement dictionary lookup using Tries (a

special rooted tree).

Trie

A trie is a special rooted tree that allows us to store a set of words by sharing their

common prefixes.

Example:

Consider the following list of five words:

hello, jello, he, hello, jelly

The trie data structure for the list above is shown below:

A trie node can be of three types:

1. Root of the trie (shown as a diamond)

2. Internal non-terminal node of a trie (white ovals)

3. Word-ending node of a trie (green ovals).

Note that a word-ending node need not be a leaf. Also, such nodes are associated with a

number that represents the frequency of the corresponding word.

Each trie edge is labelled with an alphabet.

Reading the words in the dictionary.

Starting from the root (diamond node), as we traverse a path along the trie, the letters

along a path form a word. Whenever we encounter a word-ending node, we can stop and

read off a valid word in the dictionary.

For instance, we note the correspondence between the list of words:

hello, hello, jello, he, jelly

Trie Data Structure: Specification

A trie (or a prefix tree) data structure allows us to store a set of strings from a dictionary

along with a frequency count for each strings. The following operations should be

supported:

Operation Description
Return

Type

addWord(w) Insert a word w into the trie None

lookupWord(w) Return the frequency of w in the trie (0 if not present) int

autoComplete(w)

Return a list of words in the trie along with their

frequencies so that w is a prefix of each word in the

list

list of

(str,int)

Example

We will illustrate the process of constructing a trie using an example.

At the beginning the empty trie is simply a root node: N0

Suppose we add the strings in the following order:

Test, testament, testing, ping, pink, pine, pint, testing, pinetree

The final trie after adding all workds looks like:

Lookup of a Word

The operation lookupWord allows us to count the frequency of a word in a trie. If a

word does not belong to a trie, then the frequency is 0.

Autocomplete

The operation autoComplete provides a list of “completions” of a given string along

with their frequencies.

Trie Node

A trie node structure has the following attributes:

 isRoot A Boolean flag denoting if the node is a root.

 isWordEnd A Boolean flag denoting if the node is the word ending node.

 count A count field for frequency count for a word ending node.

 next: A dictionary that maps from each of the alphabets 'a’ - 'z’ to the child node

corresponding to the alphabet.

Please write a class for Trie, implement the functions addWord, lookupWord, and

autoComplete.

Also write a test class which takes a TXT file as input, within the TXT files there is a list

of words (dictionary file) and your test class will add all words in the TXT file, and the

user can lookup a word, or given a prefix, the test class can give auto-completion.

